by Beonchip | Dec 17, 2024 | Be-Gradient, Chips, Technical Notes
Summary This paper describes the use of our Be-Gradient Barrier-Free device to simulate the ischemic conditions present in solid tumors, enabling the study of volatile organic compounds (VOCs) as biomarkers for tumor progression . This approach marks a notable...
by Beonchip | Dec 2, 2024 | Be-Doubleflow, Be-Flow, Be-Transflow, Chips, Technical Notes
Summary This guide summarizes Beonchip’s microfluidic chip design customization options to improve your cell culture model. It highlights the importance of channel dimensions in microfluidic chips for key aspects such as cell culture area, microscopy inspection, and...
by Beonchip | Nov 13, 2024 | Be-Flow, Chips, Technical Notes
Summary Gravity-driven flow is paramount during the first stages of culture in organ-on-chip platforms. This study demonstrates oxygen consumption in a cellular monolayer within a microfluidic device and highlights the significance of gravitational-flow in maintaining...
by Beonchip | Sep 24, 2024 | Be-Flow, Chips, Technical Notes
Summary Researchers from the University of Castilla la Mancha and University of Zaragoza have optimized a kidney-on-chip for graphene particle testing. The microfluidic system was placed under flow conditions to reduce the adsorption of graphene materials on the...
by Beonchip | Sep 12, 2024 | Be-Transflow, Chips, Technical Notes
Summary At Beonchip, we provide standard cell culture platforms and the option to customize the channel dimensions or membrane pore size. Additionally, we offer services to adapt the device design for specific research needs. In this note, we’ll summarize the results...
by Beonchip | Apr 24, 2024 | Be-Gradient, Chips, Technical Notes
Summary Here we provide a comprehensive and brief overview of a scientific publication detailing the developmental journey of the Be-Gradient Barrier-Free device. In it, we elucidate its intricate design process and rigorous testing procedures in a collaborative...