Beonchip logo

Publications

Latests publications

    1. González-Guede, I.; Garriguez-Perez, D.; Fernandez-Gutierrez, B. Osteochondral Tissue-On-a-Chip: A Novel Model for Osteoarthritis Research. Int. J. Mol. Sci. 202425, 9834.
    2. Petit, I. et al. (2024) ‘Proximal Tubule-on-Chip for Predicting Cation Transport: Dynamic Insights into Drug Transporter Expression and Function’, bioRxiv, p. 2024.10.12.617976. doi: 10.1101/2024.10.12.617976.
    3. Fernandez-Carro, E.; Remacha, A.R.; Orera, I.; Lattanzio, G.; Garcia-Barrios, A.; del Barrio, J.; Alcaine, C.; Ciriza, J. Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models. Int. J. Mol. Sci. 202425, 4020.
    4. Du, S., Wang, Z., Zhu, H. et al. Flavonoids attenuate inflammation of HGF and HBMSC while modulating the osteogenic differentiation based on microfluidic chip. J Transl Med 22, 992 (2024). 
    5. Clara Bayona et al, Development of an organ-on-chip model for the detection of volatile organic compounds as potential biomarkers of tumour progression, Biofabrication 16, 045002 (2024)
    6. Olaizola-Rodrigo et al., S. Reducing Inert Materials for Optimal Cell–Cell and Cell–Matrix Interactions within Microphysiological Systems. Biomimetics9, 262. (2024)
    7. Olaizola-Rodrigo et al., Tuneable hydrogel patterns in pillarless microfluidic devices, Lab Chip,24, 2094-2106 (2024).
    8. Fernandez-Carro, E. et al. Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models. Int. J. Mol. Sci. , 25, 4020 (2024)
    9. Sara Gimondi, et al. Size-Dependent Polymeric Nanoparticle Distribution in a Static versus Dynamic Microfluidic Blood Vessel Model: Implications for Nanoparticle-Based Drug Delivery, ACS Applied Nano Materials 6 (9), 7364-7374 (2023)
    10. Vieira, J. P. J. et al. ‘Morphology of Adherent Cells of the Line Vero Cultivated in a Three-Dimensional Environment inside a Microfluidic Device Differs from their Morphology when Cultivated in Monolayers’, Journal of Advances in Medicine and Medical Research, 36(8), pp. 230–237 (2024).
    11. Galati, S. et al. ‘Dual-responsive magnetic nanodroplets for controlled oxygen release via ultrasound and magnetic stimulation’, Nanoscale, 16(4), pp. 1711–1723. doi: 10.1039/D3NR04925F(2024).
    12. Fernandez-Carro, E. et al. ‘Nanoparticles Stokes radius assessment through permeability coefficient determination within a new stratified epithelium on-chip model’, Artificial cells, nanomedicine, and biotechnology, 51(1), pp. 466–475. (2023).
    13. González-Lana, S. Surface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model. LAB ON A CHIP. (2023).
    14. Deshmukh, B. et al.  ‘Multi-protein chimeric antigens, a novel combined approach for efficiently targeting and blocking the blood stage of Plasmodium falciparum’. doi: 10.1101/2023.11.22.568251(2023).
    15. Charlotte Bouquerel et al. Precise and fast control of the dissolved oxygen level for tumor-on-chip, Lab Chip, 2022,22, 4443-4455. (2022)
    16. Ayensa-Jiménez, J. et al. M. Analysis of the parametric correlation in mathematical modeling of in vitro glioblastoma evolution using copulas. MATHEMATICS. 9 – 1, pp. 27 (2021).
    17. Pérez-Aliacar. M. et al. Predicting cell behaviour parameters from glioblastoma on a chip images. A deep learning pproach. Computers in Biology and Medicine. 135, pp. 104547 (2021).
    18. Stankovic, T. et al.  In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. DRUG RESISTANCE UPDATES. 55, pp. 100753. (2021).
    19. Ayensa-Jiménez, J. et al. Mathematical formulation and parametric analysis of in vitro cell models in microfluidic devices: application to different stages of glioblastoma evolution. SCIENTIFIC REPORTS. 10 – 1, pp. 21193 (2020).
    20. Virumbrales-Muñoz M et al. Enabling cell recovery from 3D cell culture microfluidic devices for tumour microenvironment biomarker profiling. Sci Rep. (2019).
    21. Ayuso, J. M. et al. Glioblastoma on a microfluidic chip: Generating pseudopalisades and enhancing aggressiveness through blood vessel obstruction events. Neuro. Oncol. 19, now230 (2017).
    22. De Miguel, D. et al. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells. Nanotechnology 27, 185101 (2016).
    23. De Miguel, D. et al. Improved Anti-Tumor Activity of Novel Highly Bioactive Liposome-Bound TRAIL in Breast Cancer Cells. Recent Pat. Anticancer. Drug Discov. 11, 197–214 (2016).
    24. De Miguel, D. et al. High-order TRAIL oligomer formation in TRAIL-coated lipid nanoparticles enhances DR5 cross-linking and increases antitumour effect against colon cancer. Cancer Lett. 383, 250–260 (2016).
    25. Ayuso, J. M. et al. Development and characterization of a microfluidic model of the tumour microenvironment. Sci. Rep. 6, 36086 (2016).
    26. Martínez-gonzález, A. et al. Systems Biology of Tumor Microenvironment. vol. 936 (Springer International Publishing, 2016).
    27. Ayuso, J. M. et al. SU-8 Based Microdevices to Study Self-Induced Chemotaxis in 3D Microenvironments. Front. Mater. 2, 1–10 (2015).
Loading...