Beonchip logo
Aug 15, 2021

The importance of shear stress in biology

Up to 60% of the human adult body is water. Water is stored both within and outside the cells, constituting what is known as intracellular and extracellular fluids. The extracellular fluids can be mainly classified into interstitial fluid, contained within extracellular matrix which surrounds cells in tissues, and blood plasma. Other water-based extracellular fluid include lymph, cerebrospinal fluid, synovial, pleural, pericardial, peritoneal and ocular fluid.

Wherever fluid is, shear stress will be too. In biology and vascular processes, fluids act on the cell surface. For instance, blood flow acts on the endothelium surface of vessels walls as a frictional force coined shear stress. This mechanical phenomenon has a great impact on tissue function and biological responses through mechanotransduction processes, modulating cell morphology, proliferation, differentiation, metabolism, communication and aiding in barrier formation.1 Then, what is exactly shear stress?

Shear stress (Ʈ) is defined as a mechanical force exerted when a tangential force (F) acts on a surface (area = A):

Ʈ=F/A

For a Newtonian fluid, with constant viscosity, the shear stress depends on the viscosity (ɳ) and the shear rate ( dv/dz)

Ʈ= ɳ(dv/dz)

Although shear stress unit in the IS system is Pascal (Pa), for cardiovascular system and biological applications shear stress is measured in dyne/cm2. Being 1 Pa = 10 dynes/cm2.

There are many cell types that are constantly subjected to fluid shear stress. Endothelial cells from vascular blood vessels and lymphatic system are exposed to circulating blood and lymph. Depending on the vessel type, shear stress may vary from 30 dynes/cm2 in arteries to 1 dyne/cm2 in venous vessels and capillaries.2 It has been reported that endothelial shear stress alters cytoskeletal organization, cell shape and gene expression, increasing intracellular calcium concentration, triggering nitric oxide production and producing changes in actin stress fiber formation, aligning and remodelling microfilament network in the direction of flow.3, 4

On the other hand, epithelial cells from different tissues are also exposed to shear stress forces. The kidney, in its filtering function through a sophisticated tubular network, is capable of filtrating 120 ml per minute, what means 180 L per day.5 So that the epithelial cells lining every nephron are exposed to the shear stress of glomerular filtrate, estimated between 0.1-1 dyne/cm2. Some studies have demonstrated that renal proximal tubule epithelial cells lead to cilia formation in the presence of shear stress. In addition, the mediated signal transduction is regulated, improving epithelial cytoarchitecture, leading to increased cell volume, greater polarization of aquaporins, cation transporters and ion channels than kidney epithelial cells in static culture.6

The blood vessels surrounding alveoli of the lung are continuously exposed to shear stress from blood flow. However, shear stress is also generated on the air side of the alveolar-capillary barrier. At every breath we take, epithelial cells lining our airways are exposed to shear stress generated by the air flow, which at rest breathing is 0.5-3 dynes/cm2. These forces have been demonstrated to modulate airway epithelial barrier function, mucous production and ciliary beating alignment.3,7

Also, in the human intestinal tract the flow of digesta induced by the peristaltic motion of the intestinal wall affects the enterocytes lining the digestive tube, which has been previously shown to be 0.002-0.08 dynes/cm2. Gut on a chip microdevices applying fluid flow and shear stress promote accelerated intestinal epithelial cell differentiation, formation of 3D villi-like structures, and increased intestinal barrier function, recapitulating many complex functions of the normal human intestine. 8

It seems clear that shear stress plays a key role in the function of tissues and organs. The microfluidic devices, unlike previous in vitro cell culture platforms, are considered a powerful tool that allows flow and shear stress control in situ. Hence, this technology increases the chances of developing reliable organ models for drug screening and toxicology testing.

Authors

This article has been written by Sandra González Lana.

Bibliography

1           S. Naskar, V. Kumaran and B. Basu, Regen. Eng. Transl. Med., 2019, 5, 99–127.

2           D. C. Fernandes, T. L. S. Araujo, F. R. M. Laurindo and L. Y. Tanaka, Endothel. Cardiovasc. Dis. Vasc. Biol. Clin. Syndr., 2018, 85–95.

3           V. K. Sidhaye, K. S. Schweitzer, M. J. Caterina, L. Shimoda and L. S. King, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 3345–3350.

4           A. M. Malek and S. Izumo, J. Cell Sci., 1996, 109, 713–726.

5          Kaufman DP, Basit H, Knohl SJ. Physiology, Glomerular Filtration Rate. 2020 Jul 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–. PMID: 29763208.

6           T. T. G. Nieskens and M. J. Wilmer, Eur. J. Pharmacol., 2016, 790, 46–56.

7           Nipith Charoenngam and Michael F. Holick, Am. Heart J., 2013, 26, 132–143.

8           H. J. Kim, D. Huh, G. Hamilton and D. E. Ingber, Lab Chip, 2012, 12, 2165.

 

Microfluidic chip design customization guide for optimal cell culture

Summary This guide summarizes Beonchip’s microfluidic chip design customization options to improve your cell culture model. It highlights the importance of channel dimensions in microfluidic chips for key aspects such as cell culture area, microscopy inspection, and...

Gravity-driven flow importance in Organ-on-chip applications

Summary Gravity-driven flow is paramount during the first stages of culture in organ-on-chip platforms. This study demonstrates oxygen consumption in a cellular monolayer within a microfluidic device and highlights the significance of gravitational-flow in maintaining...

Bioprinting in organ-on-chip applications

Summary Over the past few years, bioprinting has emerged as a compelling field of study. The fusion of bioprinting technology with organ-on-chip platforms has opened novel avenues for advancing in vitro cell culture methodologies. This technical note explores...

A microphysiological system for handling graphene-related materials under flow conditions

Summary Researchers from the University of Castilla la Mancha and University of Zaragoza have optimized a microfluidic system under flow conditions to reduce the adsorption of graphene materials on components such as tubing and microfluidic devices, as well as their...

Improving cell-cell and cell-matrix contact area with custom designs of the Be-Transflow device

Summary At Beonchip we offer standard cell culture platforms and the option to customize the channel's dimensions or pore size of the membrane. In addition, we also offer services where the device’s design can be altered to better suit the research needs.In this note,...

BE-Gradient as a blood-brain barrier model

Summary Here we provide a comprehensive and brief overview of a scientific publication detailing the developmental journey of the BE-Gradient Barrier-Free device. In it we elucidate its intricate design process and rigorous testing procedures in a collaborative effort...

Cell fixation, staining and immunostaining in a chip.

Introduction Cell fixation and immunostaining are critical techniques in cell biology and biomedical research. Cell fixation is the process of immobilising cells in a particular state, preserving their morphology, and preventing any further changes. This is crucial...

BE-Transflow device as an epithelium-on-a-chip model for permeability studies

Researchers from the University of Zaragoza have employed the Be-Transflow device to develop a stratified epithelia-on-a-chip model, highlighting this device as a useful platform for permeability studies.Figure 1 BE-Transflow device. Replicating the permeability of a...

Organoids on chip

What is an organoid and why use it in research? There has been an increasing shift towards the development of 3D cell culture models in attempts to create an increased complexity that can be compared with the in vivo better than 2D models. From the different 3D...

How to perform Cellular Extraction in a Beonchip device: Step-bt-step guide

This graphical abstract was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unparted licence”. Overview One of the strongest advantages of BEOnChip devices is their compatibility with microscopy which...
Loading...