Last week we had the visit of our Dutch colleagues of ACTA and Ocello, partners in one of the Euopean projects that we are involved about Bone on a Chip. During two days we explained our developments of the last 6 months and discuss about possible improvements in the different areas involved in the design and validation of the new device.

BONAFIDE will develop, validate and deliver an in vitro human bone-on-chip platform that will simulate bone growth, resorption and remodeling for medium/ high throughput evaluation of drugs (e.g. anti-osteoporosis, nutrients, and biomaterials (e.g. bone cements). The BONAFIDE platform can be directly implemented in the preclinical workflow of companies and consists of a microfluidic chip containing a bone-mimetic matrix and standard operating procedures for human bone culture.

To build organs on a chip, it is neccesary to combine multiple types of cells from an organ on a microfluidic chip, while steadily supplying nutrients, removing waste, and applying mechanical forces the tissues would face in the body. In the future, the researchers could potentially grow human bones  in immune-deficient mice.

Project: MICROGUT

Reproduction of the microenvironment of the gastrointestinal tract for the nutritional study of alternative proteins and their interaction with the microbiota The MICROGUT project aims to investigate the nutritional quality and microbiota interaction of novel protein...

Project: DIAMOOC

DIAMOOC: Integrated AI Design and Engineering of 3D Bioprinted Multi-Organoids on Chip for Tumor Diagnosis and Therapy The project aims to develop an innovative colorectal cancer model that integrates a large bioprinted colorectal cancer organoid and the vascular...

GrowDex®-T in a commercial organ-on-a-chip under active flow

INTRODUCTION Rapidly evolving fields of medicine and pharmaceutics require more robust, cost-effective, ethical, and complex systems to better understand the human body and to develop new treatments for debilitating diseases. It has been shown that commonly used...

Intestinal epithelial monolayer formation using CACO-2 perfused with BE-FLOW and FLOW EZ™

INTRODUCTION Gut-on-a-chip models offer a powerful in vitro platform for studying the physiology and patho-physiology of the intestine. The gut is home to a microbiome that plays an important role in health and disease. Some of these microorganisms survive the hypoxic...

The importance of shear stress in biology

Up to 60% of the human adult body is water. Water is stored both within and outside the cells, constituting what is known as intracellular and extracellular fluids. The extracellular fluids can be mainly classified into interstitial fluid, contained within...