Beonchip logo
Jun 04, 2018

Bone-on-a-chip meeting in Zaragoza

Last week we had the visit of our Dutch colleagues of ACTA and Ocello, partners in one of the European projects that we are involved about Bone-on-a-Chip. During this two-day meeting, we explained our developments of the last 6 months and discussed possible improvements in the different areas involved in the design and validation of the new device.

BONAFIDE will develop, validate and deliver an in vitro human bone-on-chip platform that will stimulate bone growth, resorption and remodeling for medium/ high throughput evaluation of drugs (e.g. anti-osteoporosis, nutrients, and biomaterials (e.g. bone cements). The BONAFIDE platform can be directly implemented in the preclinical workflow of companies and consists of a microfluidic chip containing a bone-mimetic matrix and standard operating procedures for human bone culture.

To build organs on a chip, it is necessary to combine multiple types of cells from an organ on a microfluidic chip, while steadily supplying nutrients, removing waste, and applying mechanical forces the tissues would face in the body. In the future, the researchers could potentially grow human bones in immune-deficient mice.

Volatile organic compound detection in vitro as biomarkers of tumor progression

Summary This paper describes the use of our Be-Gradient Barrier-Free device to simulate the ischemic conditions present in solid tumors, enabling the study of volatile organic compounds (VOCs) as biomarkers for tumor progression . This approach marks a notable...

Microfluidic chip design customization guide for optimal cell culture

Summary This guide summarizes Beonchip’s microfluidic chip design customization options to improve your cell culture model. It highlights the importance of channel dimensions in microfluidic chips for key aspects such as cell culture area, microscopy inspection, and...

Gravity-driven flow importance in Organ-on-chip applications

Summary Gravity-driven flow is paramount during the first stages of culture in organ-on-chip platforms. This study demonstrates oxygen consumption in a cellular monolayer within a microfluidic device and highlights the significance of gravitational-flow in maintaining...

Bioprinting in organ-on-chip applications

Summary Over the past few years, bioprinting has emerged as a compelling field of study. The field of organ-on-chip has particularly benefited from bioprinting applications, offering novel pathways to enhance in vitro cell culture methods. This technical note explores...

A microphysiological system for handling graphene-related materials under flow conditions

Summary Researchers from the University of Castilla la Mancha and University of Zaragoza have optimized a kidney-on-chip for graphene particle testing. The microfluidic system was placed under flow conditions to reduce the adsorption of graphene materials on the...

Improving cell-cell and cell-matrix contact area with custom designs of the Be-Transflow device

Summary At Beonchip, we provide standard cell culture platforms and the option to customize the channel dimensions or membrane pore size. Additionally, we offer services to adapt the device design for specific research needs. In this note, we’ll summarize the results...

Be-Gradient as a blood-brain barrier model

Summary Here we provide a comprehensive and brief overview of a scientific publication detailing the developmental journey of the Be-Gradient Barrier-Free device. In it, we elucidate its intricate design process and rigorous testing procedures in a collaborative...

Cell fixation, staining and immunostaining in a chip.

Introduction Protocols such as immunostaining on a chip are frequently searched for, at the moment. Cell fixation and immunostaining are critical techniques in cell biology and biomedical research. Cell fixation is the process of immobilising cells in a particular...

Be-Transflow device as an epithelium-on-a-chip model for permeability studies

Researchers from the University of Zaragoza have employed a Beonchip microfluidic device to develop a stratified epithelia-on-a-chip model, showcasing the Be-Transflow as an epithelium-on-chip model for permeability studies.Figure 1 Be-Transflow device. Introduction...

Organoids-on-chip

In this note, we summarise the possible combination of two technologies, organoids and microfluidic devices, in what is also known as organoids-on-chip. What is an organoid and why use it in research? There has been an increasing shift towards the development of 3D...
Loading...