Beonchip logo
Jan 26, 2018

Workshop with our colleagues from Eyown technologies

Last Friday 26th we did a small workshop of our products to EYOWN Technologies, a biotech company from Madrid, specialized in the optimization of laboratory processes through instrumentation and Biocomputing tools.

Eyown has worked more than 20 years automatizing lab processes, having a protocol where they show all the different stages needed to automatize techniques in an investigation laboratory. This protocol starts in the client study of the processes suitable for automatization and finishes in the maintenance and update of the developed systems.

During their visit, our validation team show our Eyown colleagues how Be-gradient and Be-flow works and they could try it to see that it´s not difficult to introduce yourself in microfluidics. For them it was also very interesting our new project of adapting our technology to the sizes and designs of the pharma sector, where especially Contract Research Organizations (CROs) can find dispositives much more efficient than the actual ones.

BE-Gradient as a blood-brain barrier model

Summary Here we provide a comprehensive and brief overview of a scientific publication detailing the developmental journey of the BE-Gradient Barrier-Free device. In it we elucidate its intricate design process and rigorous testing procedures in a collaborative effort...

Cell fixation, staining and immunostaining in a chip.

Introduction Cell fixation and immunostaining are critical techniques in cell biology and biomedical research. Cell fixation is the process of immobilising cells in a particular state, preserving their morphology, and preventing any further changes. This is crucial...

BE-Transflow device as an epithelium-on-a-chip model for permeability studies

Researchers from the University of Zaragoza have employed the Be-Transflow device to develop a stratified epithelia-on-a-chip model, highlighting this device as a useful platform for permeability studies.Figure 1 BE-Transflow device. Replicating the permeability of a...

Organoids on chip

What is an organoid and why use it in research? There has been an increasing shift towards the development of 3D cell culture models in attempts to create an increased complexity that can be compared with the in vivo better than 2D models. From the different 3D...

How to perform Cellular Extraction in a Beonchip device: Step-bt-step guide

This graphical abstract was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unparted licence”. Overview One of the strongest advantages of BEOnChip devices is their compatibility with microscopy which...

BE-Gradient Barrier-Free applications: Hydrogel confinement and diffusion profile

Introduction Our new design BE-Gradient Barrier-Free is a device designed for 3D culture where a central chamber is linked with two fluidic lateral channels (Figure 1). The innovation we present is the absence of any physical barrier between the central chamber and...

BE-Doubleflow App. notes: Gut-on-chip 2

Introduction In our previous technical note “BE-Doubleflow App. notes: Gut-on-chip 1” we explored our device BE-Doubleflow for gut-on-a-chip (GOC) models in collaboration with AINIA. In that note we compared our device with an insert platform with GOC outperforming...

Project: MITI2

MITI2: Gut Microbiota-Induced Tregs for Inflammatory-Bowel-Disease (IBD) Immunotherapy Last 5th of July, we took part in the kick-off meeting in Nantes of a R&D project lead by INSERM in which Beonchip will be participating in the next 4 years.MITI2 focuses on the...

BE-Doubleflow App. notes: Gut-on-chip 1

Table of Contents Introduction.................................................................................................................. 1...

Project: MICROGUT

Reproduction of the microenvironment of the gastrointestinal tract for the nutritional study of alternative proteins and their interaction with the microbiota The MICROGUT project aims to investigate the nutritional quality and microbiota interaction of novel protein...
Loading...